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Abstract
We give a rigorous and self-consistent derivation of the elementary braid
matrices representing the exchanges of adjacent Ising anyons in the two
inequivalent representations of the Pfaffian quantum Hall states with even and
odd numbers of Majorana fermions. To this end we use the distinct operator
product expansions of the chiral spin fields in the Neveu–Schwarz and Ramond
sectors of the two-dimensional Ising conformal field theory. We find recursive
relations for the generators of the irreducible representations of the braid group
B2n+2 in terms of those for B2n, as well as explicit formulae for almost all
braid matrices for exchanges of Ising anyons. Finally we prove that the braid-
group representations obtained from the multi-anyon Pfaffian wavefunctions
are completely equivalent to the spinor representations of SO(2n + 2) and give
the equivalence matrices explicitly. This actually proves that the correlation
functions of 2n chiral Ising spin fields σ do indeed realize one of the two
inequivalent spinor representations of the rotation group SO(2n) as conjectured
by Nayak and Wilczek.

PACS numbers: 71.10.Pm, 73.43.−f, 03.67.Lx

1. Introduction

One fascinating application [1, 2] of the anticipated non-Abelian statistics of chiral spin fields
in the critical two-dimensional Ising model has established a remarkable connection between
the rich-in-exact-results area of the two-dimensional rational conformal field theories (CFT)
and the new and promising field of topological quantum computation [3]. The localized non-
Abelian Ising anyons, which are believed to be realized in the fractional quantum Hall state at
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filling factor ν = 5/2, which is most likely described by the Moore–Read (Pfaffian) CFT [4],
turned out to be a useful tool for topologically protected quantum information processing
[1–3, 5]. Protection against noise and decoherence is obtained by encoding quantum
information in robust topological characteristics of the strongly correlated electron system,
such as the quasiparticle’s fusion channels, while quantum gates are implemented by
topologically non-trivial operations [1, 2, 5, 6], such as braidings of non-Abelian anyons.

Nayak and Wilczek argued in an insightful paper that the Pfaffian wavefunctions with
2n Ising anyons at fixed positions belong to a 2n−1 dimensional spinor representation of
the rotation group SO(2n), see section 9 in [7]. However, as explained in section 1.3, the
arguments they presented in support of this claim were incomplete and partly misleading. To
our knowledge, this claim therefore has been, up to now, only a conjecture. In the present
paper we provide a complete proof of this conjecture meeting the requirements of rigor of
mathematics. This proof contains three steps:

(i) Derive the elementary generators, B
(4,±)
j , j = 1, 2, 3, of the braid group B4, in the

two inequivalent irreducible representations with positive (‘+’ in the superscript) and
negative (‘−’ in the superscript) fermion parity, directly from the 4-quasihole Pfaffian
wavefunctions.

(ii) Construct recursively the generators B
(2n+2,±)
j , 1 � j � 2n + 1, of the irreducible

representations of the braid group B2n+2 in terms of the generators, B
(2n,±)
j , 1 � j �

2n − 1, of B2n.

(iii) Find explicitly the equivalence matrices mapping the obtained generators of the
representations of the braid group B2n+2 to those generating the representations of Nayak–
Wilczek with the corresponding parity.

Contrary to the common belief, the first step was not accomplished by NW in [7]—they only
computed the first line of the 2 × 2 matrix representing the exchange of the anyons with
coordinates η1 and η3, which at best could be used to determine the generators of the positive-
parity representation of B4, though some ambiguities had to be resolved, see section 1.3.
Later the braid matrix R23, as well as the other two generators R12 and R34, for the exchanges
of four Ising anyons were unambiguously derived in [5] by careful analytic continuation of the
4-quasiholes Pfaffian wavefunctions in the representation corresponding to an even number of
fermion fields in the CFT correlation function.

However, the generators of the negative-parity representation of B4 have never been
derived before, in the wavefunction approach, because the 4-anyon Pfaffian wavefunctions
with odd number of Majorana fermions have been unknown. In this paper we give the first,
to our knowledge, derivation of the generators of the negative-parity representation of B4

directly from the Pfaffian wavefunctions, without computing them explicitly, by using instead
the short-distance operator product expansions.

Furthermore, the generators of the two inequivalent representations of the braid group
B2n+2, spanned by the Pfaffian wavefunctions realized as CFT correlation functions with 2n+2
Ising anyons at fixed positions and even/odd number of Majorana fermions, are not easy to
obtain. They cannot be derived in analogy with the generators of B4 because the Pfaffian
wavefunctions with 2n + 2 anyons are not known explicitly. Fortunately, it is possible to find
recursion relations between the generators of B2n+2 and those of B2n, by using the fusion
rules of the Ising anyons. However, when we fuse two Ising anyons, the result could be either
I or a Majorana fermion ψ so that in the first case the fusion process maps a representation
of B2n+2 with given fermion parity into a representation of B2n with the same parity, while
in the second case the fusion process switches to the opposite parity. This subtlety not only
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mixes the representations but also requires that we know both representations of B2n in order
to construct inductively from them any of the representations of B2n+2.

Meanwhile, the 4-quasihole results of NW have been reproduced in [8] using the universal
R matrix in the quantum-group approach for the Ising model. It is worth stressing that the
arguments of [8] do not prove the NW conjecture because the representation of the braid group
B4 in [8] is defined by the authors in such a way as to reproduce the results of NW as can
be seen from sections 5.2 and 5.3 in [8], however, there is no proof that it is the same as
the braid-group representation obtained by analytic continuation of the multi-anyon Pfaffian
wavefunctions as obtained, e.g., in [5].

In addition, the 4-anyon braid matrices have been convincingly derived in [9] for the case
of the p-wave superconductor, which is known to be related to the Pfaffian state [10, 11].
While the question of the basis orthonormality in the p-wave superconductor has not been
addressed in [9], it has been answered in [11]. The analysis of the p-wave superconductor
is more conclusive about the braid generators, however, the connection to the Pfaffian FQH
state is more elaborate, because only the large-distance behavior of the weak-pairing phase is
related to the MR state [10].

The above-mentioned confirmations would have been very nice if we had an independent
proof of the NW conjecture, however, they are still not sufficient to prove this conjecture,
because they are either defined on purpose to reproduce the NW results or are indirectly
related to the many-body states of the electron system and the correspondence depends on
many assumptions. Therefore, it would be useful to have an independent, self-consistent and
rigorous derivation of the braid matrices directly from the Pfaffian wavefunctions representing
the states containing multiple Ising anyons, which are actually used to define the qubits in
TQC [1].

One more reason for this necessity is that the eventual experiments with the real quantum
Hall systems would test the properties of the strongly correlated electron state that are encoded
into the corresponding many-body wavefunction. Recall that the gauge-invariant quantity in
the adiabatic transport exchanging Ising quasiholes is the product of the explicit monodromy
(which can be computed in the CFT or quantum group approach) and the geometrical Berry
phase [12–14] which is present only in the wavefunction approach. This is a subtle point
because whether the adiabatic transport of Ising anyons, along complete loops around each
other, is indeed realized by spinor representations of the rotation group depends on the Berry
connection of the trial wavefunctions. It has been argued that the actual holonomy, which is
the physically observable quantity that we intend to use for topological quantum computation,
is indeed equal to the monodromy of the Pfaffian wavefunctions because the Berry connection
is trivial [11–14], i.e., the only contribution comes from the ubiquitous Gaussian factor that is
typical for charged particles in the magnetic field and this geometrical contribution is simply
the Aharonov–Bohm phase. Given that the multi-anyon trial wavefunctions are holomorphic,
that would certainly be true if they could be proven to be orthonormal [13, 14]. While
the first attempts [12] succeed in generalizing the analogy of (the overlap screening of) the
Coulomb plasma, at least to the Pfaffian state with two anyons, a recent argument about the
4-anyon case [14], which could be generalized to more anyons, seems to provide convincing
evidence that the multi-anyon wavefunctions obtained in an appropriate CFT basis are indeed
orthonormal. Therefore, it is now rather plausible that the holonomy of the multi-anyon
Pfaffian wavefunctions is precisely given by the monodromy which could be obtained by
analytic continuation, and this is what we shall use in this paper. Note also that the Landau
level mixing, which has important consequences for the physics of the quantum Hall state
at filling factor ν = 5/2, would certainly modify [13] the exchange properties of the Ising
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anyons derived by the monodromies and this effect can only be analyzed in the wavefunction
approach.

The details in the explicit representation of the braid generators and the differences
between their distinct realizations become more important when we try to implement various
quantum gates and to estimate the computational power of the Ising-anyon TQC [5]. For
example, it was possible to construct the CNOT gate [5] in terms of seven elementary braidings,
however this construction could not be generalized for systems with more anyons, i.e., the
CNOT could not be embedded into systems with more qubits. The precise braid-generators
analysis is crucial for answering such questions as whether it is possible to implement the
entire Clifford-gate group purely by braiding or not, see [6] for the answer.

Outline of the paper: In this paper we give a rigorous and unified derivation of the braid
matrices, representing the exchanges of Ising anyons, and a proof of the NW conjecture
based on the wavefunction approach, and this result is independent of the orthonormality of
the CFT blocks used as a basis. Combined with the orthonormality results obtained in [14]
this implies that the adiabatic transport of Ising anyons could indeed be used for topological
quantum computation as proposed in [1, 7, 11, 14]. In section 1.1 we review the subtle
issue of the chiral fermion parity and its spontaneous breaking in the doubly degenerate
Ramond sector of the Ising model due to the presence of the Majorana fermion zero mode,
following [15, 16] and introducing their notation. This is necessary for the formulation of
the short-distance operator product expansions of the spin fields σ± in the Ramond sector,
derived in [15], which is the main tool for the computation of the non-diagonal braid matrices
B

(4,±)
2 in sections 3.2 and 3.3. In section 1.2 we recall the definitions of the 4-quasihole

Pfaffian wavefunctions as correlation functions [4, 7] in the û(1)× Ising CFT containing
four σ fields and even number of Majorana fermions and introduce the notation for the
computational states, as well as the encoding of quantum information, following [5, 6].
In section 1.3 we formulate the NW conjecture, which we intend to prove in this paper,
and in section 1.4 we announce the precise statement about the braid generators that we
obtain in the Pfaffian wavefunction representations of the braid group B4 with positive
and negative parity, which is the first step toward the proof. Then in section 2 we
derive the diagonal braid matrices B

(4,±)
1 and B

(4,±)
3 by using the short-distance operator

product expansion (OPE) in the Neveu–Schwarz (NS) sector of the Ising model, representing
the elementary 4-anyon exchanges in the positive-parity (section 2.1) and negative-parity
(section 2.2) wavefunction representations. Next, in section 3 we derive the non-diagonal
braid matrices B

(4,±)
2 , in the wavefunction representations with positive parity (section 3.2)

and negative parity (section 3.3), by using the short-distance OPE, this time in the Ramond
(R) sector of the Ising model, which is reviewed in section 3.1 following [15]. The braid
generators B

(4,+)
j , j = 1, 2, 3, obtained in the representation of B4 with positive fermion

parity, coincide completely with those derived in [5] for the case when the homotopic
condition |η12η34/η13η24| < 1 of [5] is fulfilled. Note that the B

(4,+)
j obtained here are

explicitly different from those of NW. Furthermore, the braid generators B
(4,−)
j , j = 1, 2, 3,

for the representation of B4 with negative fermion parity, are important new results which
have not been obtained before from the 4-quasihole Pfaffian wavefunctions because these
wavefunctions were unknown in the negative-parity representations. In proposition 1 in
section 4 we derive new recursive relations for the projected (2n+2)-anyon exchange generators
B

(2n+2,±)
j , j = 1, . . . , 2n + 1, in terms of those for 2n anyons, B

(2n,±)
j , j = 1, . . . , 2n − 1,

and give maximally explicit new formulae for the (projected) braid matrices in the corollary.
Finally we prove in proposition 2 in section 5 that the braid-group representations derived
from the multi-anyon Pfaffian wavefunctions are equivalent to those derived in the SO(2n + 2)
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spinor approach and give the explicit equivalence matrices which are also new results. This
equivalence makes it completely legitimate to interpret the abstract parity in the spinor
representations of SO(2n + 2) as the physical fermion parity in the Ising model.

1.1. Double degeneracy of the R-sector and spontaneous breaking of fermion parity

The Ramond sector (or twisted sector) of the Ising model is defined as the superselection
sector in which the Majorana fermion field has periodic boundary conditions on the cylinder
and antiperiodic on the conformal plane [15, 17]. Because of the periodic boundary conditions
of the Majorana fermion in the R-sector, whose Laurent mode expansion in the complex plane

ψ(z) =
∑
n∈Z

ψnz
n−1/2, {ψn,ψm} = δn+m,0

implies the presence of a fermionic zero mode ψ0, the ground state in this sector must
necessarily be doubly degenerate if the chiral fermion parity is conserved. Indeed, the
Majorana zero mode ψ0 = ψ

†
0 , (ψ0)

2 = (1/2)I and the chiral fermion parity operator γ ,
satisfying γψ0 + ψ0γ = 0 and γ 2 = I, form a two-dimensional Clifford algebra whose lowest
dimensional representation is two dimensional and can be expressed in terms of the Pauli
matrices [16]. Choosing a γ -diagonal basis, the two chiral spin fields of CFT dimension
1/16 (with positive and negative fermionic parity) intertwining between the vacuum and the
R-sector’s lowest weight state can be written as [15]

|±〉 = σ±(0)|0〉, γ σ±γ = ±σ±. (1)

The conservation of the fermion parity implies that the two fields σ± in equation (1) must obey
Abelian fusion rules

σ+ × σ+ = I, σ+ × σ− = ψ, σ− × σ− = I, ψ × σ± = σ∓. (2)

On the other hand, modular invariance requires a single lowest weight state [16], like in the
case of the Gliozzi–Scherk–Olive projection in string theory, which is conventionally chosen
as

σ = σ+ + σ−√
2

�⇒ σ × σ = I + ψ

and consequently obeys non-Abelian statistics. This projection leads to spontaneous breaking
of the chiral fermion parity, see [16] for a more detailed explanation. Despite the seemingly
unphysical nature of the chiral spin fields σ± with definite fermion parity they appear to be
very convenient for enumerating different computational states, for labeling the fusion paths
in the corresponding Bratteli diagrams [3, 6], as well as for the identification of the spinor
parity in the representations of SO(2n + 2) with the fermion parity in the Ising model.

1.2. Wavefunctions for four Ising anyons in the positive-parity representation

The wavefunction for the Pfaffian fractional quantum Hall state with even number N of holes
(or electrons) at positions z1, . . . , zN and four quasiholes at positions η1, . . . , η4, can be
realized as a correlation function, in the û(1) × Ising CFT [4, 7, 5],

�4qh(η1, η2, η3, η4; {zi}) =
〈
ψqh(η1)ψqh(η2)ψqh(η3)ψqh(η4)

N∏
i=1

ψhole(zi)

〉
(3)

of the field operators corresponding to creation of holes and quasiholes

ψhole(z) = ψ(z):ei
√

2φ(z): and ψqh(η) = σ(η):ei 1
2
√

2
φ(η):, (4)
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respectively, where σ(η) is the chiral spin field in the Ising model of dimension 1/16 and
ψ(z) is the right-moving Majorana fermion in the chiral Ising model. It can be expressed in
more explicit form in terms of the Pfaffian wavefunctions [5], however, because they will not
be needed in our fusion-rules approach we will skip them. We shall only use the notation of
[5, 7] for the two linear independent 4-quasiholes states

�
(0)
4qh ≡ |0〉+ ∼ 〈σ+σ+σ+σ+〉, �

(1)
4qh ≡ |1〉+ ∼ 〈σ+σ−σ+σ−〉 (5)

and will call them the computational basis in the positive-parity representation (representation
parity is denoted by the subscript ‘+’). In the following section we will give more detailed
expressions for the computational-basis states (5) as well as an explanation of the sign ‘∼’. We
can now argue why it is important to derive the braid generators directly from the wavefunctions
representing FQH states with four Ising anyons. It might indeed be possible to derive the
braid-group generators from the universal R-matrix for the quantum group corresponding to
the Pfaffian FQH state [8]. However, it can be shown that the Pfaffian wavefunctions (5) with
four Ising anyons, defined in [5], are different from the correlation functions of four σ fields
(which are zero unless e1e2 = e3e4 = κ and then, see equation (6.43) in [15])

〈σe1(η1)σe2(η2)σe3(η3)σe4(η4)〉 = 1√
2

(
η13η24

η12η14η23η34

)1/8√
1 + κ

√
x, (6)

so that the former functions would have different analytic properties from the latter because of
the presence of the Majorana fermions. Because the 4-point correlation functions (6) depend
only on the product of the signs of the fields comprising the first and the second pair we can
encode information in the topological charge κ = e1e2 of the first pair and then the topological
charge of the second pair is fixed to be the same. It is also obvious from equation (6) that the
order of signs in the two pairs is irrelevant, i.e., σ+σ− ∼ σ−σ+ because e1e2 = e2e1 = κ , so
that we can always choose the sign of the first σ field in each pair to be ‘+’.

1.3. The Nayak–Wilczek conjecture

Nayak and Wilczek conjectured [7] that the elementary matrices representing the exchanges
of 2n Ising quasiparticles in the Pfaffian fractional quantum Hall state can be interpreted
as π/2 rotations from SO(2n), i.e., they can be expressed in terms of the gamma matrices
γ

(n)
i , 1 � i � 2n, which satisfy the anticommutation relations of the Clifford algebra{

γ
(n)
i , γ

(n)
j

} = 2δij , 1 � i, j � 2n. (7)

In more detail, the elementary operations for the exchange of the ith and (i +1)th quasiparticles
could be expressed, in an appropriate basis of 2n-quasiholes Pfaffian wavefunctions [7, 9], as

R
(n)
j = ei π

4 exp

(
− π

4
γ

(n)
j γ

(n)
j+1

)
≡ ei π

4√
2

(
I − γ

(n)
j γ

(n)
j+1

)
, (8)

where 1 � j � 2n − 1 and the second equality follows from the fact that (γjγj+1)
2 = −I due

to the anticommutation relations (7).
The 2n matrices γ

(n)
i have dimension 2n × 2n and can be defined explicitly as follows

[7, 8, 18]:

γ
(n)
1 = σ1 ⊗ σ3 ⊗ · · · ⊗ σ3

γ
(n)
2 = σ2 ⊗ σ3 ⊗ · · · ⊗ σ3

...
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γ
(n)
2j−1 = I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

j−1

⊗σ1 ⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
n−j

γ
(n)
2j = I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

j−1

⊗σ2 ⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
n−j

...

γ
(n)
2n−1 = I2n−1 ⊗ σ1

γ
(n)
2n = I2n−1 ⊗ σ2. (9)

The ‘gamma-five’ matrix γ
(n)
F , defined by

γ
(n)
F = (− i)nγ (n)

1 · · · γ (n)
2n ,

commutes with all matrices (8) and therefore R
(n)
j cannot change the γ

(n)
F eigenvalues ±1,

which means that the representation (8) is reducible and the two irreducible components,
corresponding to eigenvalues ±1, can be obtained by projecting with the two projectors

P
(n)
± = I2n ± γ

(n)
F

2
, i.e.,

(
P

(n)
±
)2 = P

(n)
± = (

P
(n)
±
)†

. (10)

In other words, the generators of the two irreducible spinor representations of the braid group
B2n can be obtained by simply projecting (1 � j � 2n − 1)

R
(n,±)
j = P

(n)
± R

(n)
j P

(n)
± = ei π

4√
2

(
I − γ

(n)
j γ

(n)
j+1

)
P

(n)
± . (11)

Equation (11) is what we call the NW conjecture in this paper because the braid generators
(11) have not been derived in [7] from the multi-anyon Pfaffian wavefunctions. Instead, NW
say on page 546 in [7]: ‘We will verify this assertion in the 4-quasihole case with our explicit
wavefunctions . . . and give an argument in favor of its validity in the 2n-quasihole case’. To
this end they first verify the statement for four quasiholes by computing the first row of the
2 × 2 braid matrix representing the exchange R13 of the anyons with coordinates η1 and η3

and then compute R23 from that. However, this kind of derivation of the elementary braid
matrix R23 is ambiguous because it is based on the result for the exchange of anyons 1 and 3
and a braid relation, such as R23 = R12R13R

−1
12 or R′

23 = R−1
12 R13R12, and the two results are

physically different. Formally, this ambiguity appears because the exchange η1 ↔ η3 depends
on the homotopy class of the exchange with respect to the second anyon (with coordinate
η2) and because of the emerging sign ambiguities which have not been fixed in a physical
way. Next, the generalization argument they mention at the end of section 9 in [7] is as
follows: ‘ . . . imagine bringing 4 quasiholes close together . . . ; the braiding is governed by
the OPE and therefore is generated be the transformations we found above in the 4-quasihole
case’. This argument is misleading because NW found the 4-quasihole braid generators only
for even fermion parity of ‘the rest’, while their generalization argument assumes that they
could use them also in the negative-parity case which is wrong. The point is that when
we separate four quasiholes the remaining 2n − 4 quasiholes could have both positive and
negative total fermion parity (with equal occurrence in the computational basis). For example,
consider the 6-anyon computational states given in equation (38) in [5]: following the NW
‘generalization argument’, let us concentrate on the first four quasiholes, corresponding to
coordinates η1, . . . , η4; the rest of the quasiholes, i.e., the two quasiholes with coordinates η5

and η6 in this case, have positive total fermion parity in the computational states denoted by
|00〉 and |10〉 in equation (38) in [5], while in the states |01〉 and |11〉 it is negative. In the first
case one could eventually use the 4-quasihole results of [7], while for negative parity one needs
an inequivalent set of generators which have been missing in [7]. Actually the braid generators
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in the negative-parity representations of the braid group B4 have never been known before,
because the explicit 4-anyon Pfaffian wavefunctions in the negative-parity representation have
been unknown. Hence one cannot derive recursively the generators of B2n only from those
of the positive-parity representation of B4, so that NW have drawn an inference from slight
or insufficient evidence. In this paper we are filling this logical gap thus turning the insightful
NW conjecture into a mathematical theorem.

1.4. Braid matrices for exchanges of four Ising anyons: statement of the result

One of the important results in this paper is the unified derivation of the braid matrices,
B

(4,±)
1 , B

(4,±)
2 and B

(4,±)
3 , in the two inequivalent representations of the braid group B4

corresponding to positive and negative fermion parity, directly from the 4-anyon Pfaffian
wavefunctions. The superscript ‘4’ in the notation for the braid generators expresses that
these are generators of representations of B4, while the sign ‘±’ denotes the fermion parity
of the corresponding representation. In sections 2 and 3 we will show that the result for the
generators of the positive-parity representation of B4

B
(4,+)
1 =

[
1 0
0 i

]
, B

(4,+)
2 = ei π

4√
2

[
1 − i

− i 1

]
, B

(4,+)
3 =

[
1 0
0 i

]
(12)

obtained here by the fusion-rules approach completely coincides with the result of [19] obtained
by the analytic continuation of the 4-quasiholes wavefunction when |η12η34/η13η24| < 1.

The braid generators B
(4,+)
j obtained here are explicitly different from those of NW,

albeit the latter can be obtained by an equivalence transformation generated by
(
B

(4,+)
3

)2
, see

section 4. However, this monodromy transformation makes an observable difference for
the physical state of the topological quantum computer, which has important physical
consequences, e.g., it implements the Pauli Z gate, and therefore has to be controlled
experimentally.

In addition we shall explicitly derive the generators of the 4-quasihole Pfaffian
representation of the braid group B4 with negative fermion parity

B
(4,−)
1 =

[
1 0
0 i

]
, B

(4,−)
2 = ei π

4√
2

[
1 − i

− i 1

]
, B

(4,−)
3 =

[
i 0
0 1

]
(13)

which has not been obtained before in the wavefunction approach.
The main idea is to employ the realization of the multi-anyon Pfaffian wavefunctions as

CFT correlation functions without using their explicit form. The key point is that the precise
braid matrices are independent of the distance between the particles being braided because
they are topological objects. Therefore we could first fuse the particles, which we intend to
exchange, and then execute braiding by analytic continuation of the relative coordinate. For
example, the counterclockwise braiding of the quasiparticles with coordinates η1 and η2 could
be executed by the analytic continuation along the circle defined by [5, 20]

η′
1 = η1 + η2

2
+ eiπt η12

2
, η′

2 = η1 + η2

2
− eiπt η12

2
, 0 � t � 1.

Thus, if we want to exchange the anyons with coordinates η1 and η2 we can first fuse η1 → η2

inside the CFT correlator, apply the OPE to extract the short-distance singular behavior in terms
of the relative coordinate η12 = η1 − η2, and then execute braiding by a simple permutation
η1 ↔ η2 plus analytic continuation in η12, i.e.,

η′
1 = η2, η′

2 = η1, (so that η′
12 = eiπη12), η′

j = ηj , for j > 2.

This leads to crucial simplifications because the (potentially unknown) CFT correlators after
fusion are independent of η12 and their explicit form is not needed since the entire non-analytic
behavior comes from the short-distance prefactors containing η12.

8
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2. Diagonal exchange matrices B
(4,±)
1 and B

(4,±)
3 : fusion rules in the NS sector

When we exchange the quasiholes with coordinates η1 and η2 or η3 and η4, corresponding to
the braid generators B

(4,±)
1 and B

(4,±)
3 respectively, it is obvious from equation (3) that there

are even or zero number of σ fields to the right of the quasiholes being exchanged. Therefore,
in order to fuse the quasiholes before braiding we can use the OPE of two σ fields in the
Neveu–Schwarz sector of the Ising model [15, 17].

The fusion rules for the σ± fields (2) lead to the following short-distance OPE in the NS
sector [15, 17]:

σ±(z1)σ±(z2) �
z1→z2

z
−1/8
12 I, σ+(z1)σ−(z2) �

z1→z2

z
−1/8
12

√
z12

2
ψ(z2). (14)

However there is another contribution to the OPE of the quasihole fields in (4) coming from
the OPE of the Abelian parts of the quasiholes operators

: ei 1
2
√

2
φ(z1) :: ei 1

2
√

2
φ(z2) : �

z1→z2

z
1/8
12 : ei 1√

2
φ(z2) :, (15)

which cancels the factors z
−1/8
12 and from now on we shall skip them (these factors have been

explicitly shown as η
1/8
ab in equation (9) in [5]).

It is worth stressing that the braid matrices B
(4,±)
1 and B

(4,±)
3 must necessarily be diagonal

[5] because the anyons being exchanged are in the NS sector where the chiral fermion parity is
preserved [16] so no coherent superposition of states with different parity is possible. Indeed,
if we want to exchange η3 with η4 we could first fuse them and then do the braiding. However,
there are no other σ fields to the right of the pair σ(η3)σ (η4) so we have to use the OPE (14)
in the NS sector and therefore, e.g., the matrix element +〈0|B(4,+)

3 |1〉+ must be zero.
In the following subsections we will consider the two cases with positive and negative

fermion parity separately.

2.1. Positive-parity representation

Using the Abelian σ± fields with definite fermion parity and the fusion-path approach [3, 6]
to label the anyonic states of matter we can write the computational basis (5) for four Ising
anyons in the positive-parity representation as follows [5, 6, 19, 21]:

|0〉+ ≡
〈
σ+(η1)σ+(η2)σ+(η3)σ+(η4)

2N∏
j=1

ψ(zj )

〉

|1〉+ ≡
〈
σ+(η1)σ−(η2)σ+(η3)σ−(η4)

2N∏
j=1

ψ(zj )

〉
.

(16)

Recall that quantum information is encoded in the topological charge κ of the first pair of σ

fields according to the rule |0〉 ↔ σ+σ+, |1〉 ↔ σ+σ−, while the second pair of σ fields carries
no information—its purpose is to make the total fermion parity in (16) trivial, in order for the
correlation functions to be nonzero, see [5, 6, 19, 21] for more detail.

To compute the braid matrix B
(4,+)
1 , representing the exchange of the first two anyons,

we can first fuse η1 → η2 and then implement braiding by η12 → eiπη12. The short-distance
approximation of the two computational-basis states are obtained by using the fusion rules
(14) and (15)

9
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|0〉+ �
η1→η2

〈
σ+(η3)σ+(η4)

2N∏
j=1

ψ(zj )

〉
,

|1〉+ �
η1→η2

√
η12

2

〈
ψ(η2)σ−(η3)σ+(η4)

2N∏
j=1

ψ(zj )

〉
.

(17)

Executing the braiding by the analytic continuation η12 → eiπη12 gives

|0〉+ �
η1→η2

〈
σ+(η3)σ+(η4)

2N∏
j=1

ψ(zj )

〉
B1→
〈
σ+(η3)σ+(η4)

2N∏
j=1

ψ(zj )

〉
= |0〉+,

|1〉+ �
η1→η2

√
η12

2

〈
ψ(η2)σ+(η3)σ+(η4)

2N∏
j=1

ψ(zj )

〉
B1→

→
√

eiπη12

2

〈
ψ(η2)σ+(η3)σ+(η4)

2N∏
j=1

ψ(zj )

〉
= i|1〉+

(18)

so that the first braid generator in the positive-parity representation is simply

B
(4,+)
1 =

[
1 0
0 i

]
.

Similarly, to compute B
(4,+)
3 we first fuse η3 → η4, using the fusion rules (14) and (15) to obtain

the short-distance approximation to the computational states, and then braid η34 → eiπη34 to
get, completely in the same way (only replacing η12 with η34), B

(4,+)
3 = B

(4,+)
1 .

2.2. Negative-parity representation

In order to write explicitly the computational basis in the negative-parity representation we
could introduce one extra Majorana fermion to the right of all σ fields, still having even number
2N of other Majorana fermions. Thus we define the computational basis for four Ising anyons
in the negative-parity representation

|0〉− ≡
〈
σ+(η1)σ+(η2)σ+(η3)σ−(η4)ψ(z0)

2N∏
j=1

ψ(zj )

〉

|1〉− ≡
〈
σ+(η1)σ−(η2)σ+(η3)σ+(η4)ψ(z0)

2N∏
j=1

ψ(zj )

〉
.

(19)

Again quantum information is encoded in the topological charge κ of the first pair of σ fields
according to |0〉 ↔ σ+σ+, |1〉 ↔ σ+σ−, however this time the second pair which fixes the total
fermion parity of the correlation functions in (19), has opposite parity compared to that in
(16), see [6, 21] for more detail.

Note that in general we can insert the extra Majorana fermion between any two pairs
of anyons. This will define a new basis of computational states in the negative-parity
representation which is related to (19), in which the extra Majorana fermion is to the right
of all σ fields, by a braid transformation that is diagonal, with elements ±1 on the diagonal
because the Majorana fermion either commutes or anticommutes with any pair of σ fields.

Now we can compute B
(4,−)
1 by first fusing η1 → η2 and then taking η12 → eiπη12.

Because the short-distance expansions of σ+(η1)σ±(η2) in the NS sector is independent of the
parity of the other fields in the correlator, this braid matrix is the same as for the positive-parity

10
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representation, i.e., B
(4,−)
1 = B

(4,+)
1 (as matrices because they act on different computational

bases).
In order to compute B

(4,−)
3 we first fuse η3 → η4, using the fusion rules (14) and (15) to

obtain the short-distance approximation to the computational states, which gives

|0〉− �
η3→η4

√
η34

2

〈
σ+(η1)σ+(η2)ψ(η4)ψ(z0)

2N∏
j=1

ψ(zj )

〉
,

|1〉− �
η3→η4

〈
σ+(η1)σ−(η2)ψ(z0)

2N∏
j=1

ψ(zj )

〉
.

(20)

Executing the braiding η34 → eiπη34 now gives |0〉− → eiπ/2|0〉− while |1〉− → |1〉− so that
the braid generator for the exchange of the last two σ fields in the negative-parity representation
is

B
(4,−)
3 =

[
i 0
0 1

]
.

3. Non-diagonal exchange matrices B(4↪±)
2 : Ising fusion rules in the Ramond sector

Just as in the previous sections we are going to use the fact that the braid matrices for coordinate
exchanges of two anyons are independent of the distance between them so we can simplify
the computation by allowing the two anyons to fuse, i.e., letting η2 → η3 in this case, and
reading the exchange phases from the analytic continuation of the singular factors containing
η23. However, when we exchange the quasiholes with coordinates η2 and η3 there is one
extra σ field to the right of the quasiholes being exchanged. Therefore, in order to fuse the
quasiholes at η2 and η3 before braiding them we need to use the OPE of two σ fields in the
Ramond sector of the Ising model [15, 17].

The OPE of two σ fields in the Ramond sector of the Ising model is more complicated than
equation (14) because the chiral fermion parity in the R-sector is spontaneously broken [16]
and therefore that OPE might contain more terms. Fortunately this OPE has been explicitly
derived in [15] (see equation (6.47) there, in which we identify σe =: ϕe, where e = ± is the
fermion parity) from the knowledge of the 4-point function computed in section 6 there and
could be written as follows:

σe1(z1)σe2(z2)|e〉 = 1√
2z

1/8
12

{
δe1,e2 |e〉 + δe1,−e2 | − e〉

+ (e.e2)

√
z12

2
ψ(

√
z1.z2)(δe1,e2 | − e〉 + δe1,−e2 |e〉)

}
+ · · · (21)

Recall that in the notation of [15] the ket-vector |e〉 is defined as the lowest weight state in
the R sector with fermion parity e, i.e., |e〉 := σe(0)|0〉. We shall use equation (21) in the
following subsections to derive the short-distance approximation of the computational state’s
wavefunctions in the bases {|0〉+, |1〉+} and {|0〉−, |1〉−}.

3.1. Short-distance OPE of the computational-basis wavefunctions

In order to simplify the analysis of the fusion process η2 → η3 we shall denote the R-sector
states entering the 4-qh wavefunctions (16) as

|±〉 := σ±(η4)

2N∏
j=1

ψ(zj )|0〉,

11
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and recall that by construction the number 2N of Majorana fermions is even. Let us now apply
the R-sector’s OPE (21), for e = +, to obtain the short-distance expansion of the 4-anyon
computational-basis vector |0〉+ (in the positive-parity representation) defined in equation (16)

σ+(η2)σ+(η3)|+〉 �
η2→η3

1√
2η

1/8
23

{
|+〉 + (+.+)

√
η23

2
ψ(

√
η2η3)|−〉

}
.

Then, multiplying from the left by 〈0|σ+(η1) we obtain

|0〉+ �
η2→η3

1√
2η

1/8
23

{
〈0|σ+(η1)|+〉 +

√
η23

2
〈0|σ+(η1)|−〉

}
. (22)

Note that the overall phase factor η
−1/8
23 in the above OPE is exactly canceled by the additional

inverse factor coming from the OPE of the Abelian part of the Ising anyons, i.e., from
equation (15) for z1 = η2 and z2 = η3, and we shall remove it from all expressions below.
Thus, recovering the detailed notation, we get the OPE of the first computational-basis state
to be

|0〉+ �
η2→η3

1√
2

⎧⎨⎩〈0|σ+(η1)σ+(η4)

2N∏
j=1

ψ(zj )|0〉

+

√
η23

2
〈0|σ+(η1)ψ(

√
η2η3)σ−(η4)

2N∏
j=1

ψ(zj )|0〉
⎫⎬⎭ . (23)

Similarly, for the computational-basis state |1〉+ we obtain the short-distance expansion

|1〉+ �
η2→η3

1√
2

⎧⎨⎩〈0|σ+(η1)σ+(η4)

2N∏
j=1

ψ(zj )|0〉

−
√

η23

2
〈0|σ+(η1)ψ(

√
η2η3)σ−(η4)

2N∏
j=1

ψ(zj )|0〉
⎫⎬⎭ . (24)

Adding and subtracting equations (23) and (24) we obtain

|0〉+ + |1〉+

2
�

η2→η3

1√
2
〈0|σ+(η1)σ+(η4)

2N∏
j=1

ψ(zj )|0〉

|0〉+ − |1〉+

2
�

η2→η3

1√
2

√
η23

2
〈0|σ+(η1)ψ(

√
η2η3)σ−(η4)

2N∏
j=1

ψ(zj )|0〉.
(25)

Equation (25) will be our starting point for the derivation of the braid matrices in the
following subsection because it expresses the correlation functions on the RHS in terms
of the computational basis in the LHS in the short-distance limit.

3.2. Braiding η2 with η3 in the positive-parity representation

The braiding transformation B
(4,+)
2 is represented by the coordinate exchange

η2 → η3, η3 → η2, so that η23 → eiπη23.

12



J. Phys. A: Math. Theor. 42 (2009) 225203 L S Georgiev

Applying the coordinate exchange over |0〉+ and making analytic continuation in η23 we get

B
(4,+)
2 |0〉+ �

η2→η3

1√
2

⎧⎨⎩〈0|σ+(η1)σ+(η4)

2N∏
j=1

ψ(zj )|0〉

+

√
eiπη23

2
〈0|σ+(η1)ψ(

√
η2η3)σ−(η4)

2N∏
j=1

ψ(zj )|0〉
⎫⎬⎭ . (26)

Now, using
√

eiπ = i, we can substitute the correlation functions appearing in the RHS of
equation (26) with the expressions in the LHS of equation (25) to get

B
(4,+)
2 |0〉+ �

η2→η3

|0〉+ + |1〉+

2
+ i

|0〉+ − |1〉+

2
.

Repeating the same procedure for the computational-basis state |1〉+ we obtain from
equation (24)

B
(4,+)
2 |1〉+ �

η2→η3

|0〉+ + |1〉+

2
− i

|0〉+ − |1〉+

2
so that the braid matrix in the basis {|0〉+, |1〉+} is

B
(4,+)
2 = 1

2

[
1 + i 1 − i

1 − i 1 + i

]
= ei π

4√
2

[
1 − i

− i 1

]
. (27)

The braid matrix obtained in equation (27) completely coincides with the one obtained in [5]
for |η12η34/η13η24| < 1 , where it was denoted as R

(4)
23 .

3.3. Braiding η2 with η3 in the negative-parity representation

Again the computational basis in the negative-parity representation is given by equation (19)
where 2N is even. Let us now denote

σ±(η4)ψ(z0)

2N∏
j=1

ψ(zj )|0〉 =: |∓〉

and apply the OPE (21) to obtain the short-distance version of |0〉−, i.e.,

σ+(η2)σ+(η3)|+〉 = 1√
2

{
|+〉 +

√
η23

2
ψ(

√
η2η3)|−〉

}
,

and similarly, for the computational-basis state |1〉− we can use the OPE (21) in the form

σ−(η2)σ+(η3)|−〉 = 1√
2

{
|+〉 −

√
η23

2
ψ(

√
η2η3)|−〉

}
,

to obtain (after adding and subtracting the results for the two short-distance approximations)

|0〉− + |1〉−
2

�
η2→η3

1√
2
〈0|σ+(η1)σ+(η4)ψ(z0)

2N∏
j=1

ψ(zj )|0〉

|0〉− − |1〉−
2

�
η2→η3

1√
2

√
η23

2
〈0|σ+(η1)ψ(

√
η2η3)σ−(η4)ψ(z0)

2N∏
j=1

ψ(zj )|0〉.

Because the above equation has the same η23-short-distance structure like equation (25),
executing the braiding η23 → eiπη23 produces the same matrix B

(4,−)
2 = B

(4,+)
2 (as matrices).

Thus we conclude that B
(4,−)
2 is indeed given by equation (13).

13
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4. Braid generators for exchanges of 2n + 2 Ising anyons: wavefunction approach

To summarize our results for the exchanges of four Ising anyons, we note that the generators of
the negative-parity representation (13) of B4 completely coincide with those obtained directly
from the γ matrices for SO(4) in section III of [21], i.e.,

B
(4,−)
j = R

(2,−)
j , j = 1, 2, 3.

In contrast, the second generator of the positive-parity representation of B4 is different
from that obtained in the γ matrix approach. Nevertheless, it is easy to see that the
positive-parity representation (12), obtained from the 4-quasiholes Pfaffian wavefunctions, is
completely equivalent to the positive-parity representation in the γ -matrix approach R

(2,+)
j (see

equations (9) and (10) in [21]), i.e.,

B
(4,+)
j = ZR

(2,+)
j Z, j = 1, 2, 3, Z = (

B
(4,±)
1

)2 =
[

1 0
0 −1

]
,

and the equivalence transformation is explicitly given by the Pauli matrix Z. This is so because
the Z matrix commutes with the diagonals B

(4,+)
1 and B

(4,+)
3 , however, changes the signs of

the off-diagonal elements of B
(4,+)
2 . It can also be directly seen that the two representations

(12) and (13) of B4 are inequivalent, see, e.g., section III in [21]. Thus we conclude that the
representations (12) and (13) of B4 are equivalent to the spinor representations of SO(4) with
the corresponding parity [7, 21].

In this section, we shall generalize this result to the braid representations for 2n + 2 Ising
anyons. Our strategy to compute the braid matrices B

(2n+2,±)
j , describing the exchanges of

2n+2 anyons in the Ising representation of the braid group B2n+2, would be to fuse some pair of
σ fields, representing one of the qubits in our n qubit system, which has the effect of projecting
out this qubit. The resulting states after fusion will belong to one of the two representations
of B2n with positive or negative parity so that we can express the braid matrices B

(2n+2,±)
j

recursively in terms of B
(2n,±)
j . More precisely, we shall prove the following recurrence

relations.

Proposition 1. The 2n × 2n dimensional matrices B
(2n+2,±)
j , (1 � j � 2n + 1) representing

the generators of the braid group B2n+2 in the computational bases (36) can be expressed
recursively in terms of the braid matrices B

(2n,±)
j , (1 � j � 2n − 1) generating the Ising

representation of B2n as follows:

(i)

B
(2n+2,+)
j = B

(2n+2,−)
j for 1 � j � 2n (28)

(ii)

B
(2n+2,±)
j = B

(2n,±)
j ⊗ I2 for 1 � j � 2n − 3 (29)

(iii)

B
(2n+2,±)
j = B

(2n,±)
j−2 ⊕ B

(2n,∓)
j−2 for 3 � j � 2n + 1. (30)

Proof. We shall prove this proposition by induction with a base n = 2. To this end we shall
first explicitly prove statements (i)–(iii) for n = 2. The braid generators B

(6,±)
j are 4 × 4

dimensional matrices defined in the computational basis for six anyons (corresponding to 2
qubits, encoded in the first two pairs of σ fields, plus one extra inert pair, formed by the last
two σ fields). For positive parity this basis can be written as [6]

|00〉+ = 〈σ+σ+σ+σ+σ+σ+〉, |01〉+ = 〈σ+σ+σ+σ−σ+σ−〉,
|10〉+ = 〈σ+σ−σ+σ+σ+σ−〉, |11〉+ = 〈σ+σ−σ+σ−σ+σ+〉,

(31)

14
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where we skipped for simplicity the product of the even number of Majorana fermions as well
as the coordinates ηj of the fields σ±(ηj ). In order to find the braid matrices B

(6,+)
1 or B

(6,+)
2 ,

exchanging η1 ↔ η2 or η2 ↔ η3, respectively, we can first fuse η5 → η6. The results after
fusion are computational states from the positive- or negative-parity representations of B4,
i.e.,

|00〉+ →
η5→η6

〈σ+σ+σ+σ+〉 = |0〉+, |01〉+ →
η5→η6

〈σ+σ+σ+σ−ψ〉 = |0〉−
|10〉+ →

η5→η6

〈σ+σ−σ+σ+ψ〉 = |1〉−, |11〉+ →
η5→η6

〈σ+σ−σ+σ−〉 = |1〉+.

Let us first compute B
(6,+)
1 . Using the above fusion results for the computational basis, as well

as equations (12) and (13) for B
(4,±)
1 , we obtain

B
(6,+)
1 |00〉+ � B

(4,+)
1 |0〉+ = |0〉+ � |00〉+

B
(6,+)
1 |01〉+ � B

(4,−)
1 |0〉− = |0〉− � |01〉+

B
(6,+)
1 |10〉+ � B

(4,+)
1 |1〉+ = i|1〉+ � i|10〉+

B
(6,+)
1 |11〉+ � B

(4,−)
1 |1〉− = i|1〉− � i|11〉+,

so that B
(6,+)
1 = diag(1, 1, i, i) = B

(4,+)
1 ⊗ I2. Next, in the same way we compute B

(6,+)
2 by

using equations (12) and (13) for B
(4,±)
2 , i.e., we have B

(6,+)
2 |00〉+ →

η5→η6

B
(4,+)
2 |0〉+ so that

B
(6,+)
2 |00〉+ � ei π

4√
2
(|0〉+ − i|1〉+) � ei π

4√
2
(|00〉+ − i|11〉+).

Similarly, we have B
(6,+)
2 |01〉+ →

η5→η6

B
(4,−)
2 |0〉− so that

B
(6,+)
2 |01〉+ � ei π

4√
2
(|0〉− − i|1〉−) � ei π

4√
2
(|01〉+ − i|10〉+).

Continuing in this way with the states |10〉+ and |11〉+ we find

B
(6,+)
2 = ei π

4√
2

⎡⎢⎢⎣
1 0 0 − i
0 1 − i 0
0 − i 1 0

− i 0 0 1

⎤⎥⎥⎦ . (32)

Next, in order to compute the rest of the braid generators we can instead fuse the first two
Ising anyons. This projects out the first qubit so that the computational basis becomes

|00〉+ →
η1→η2

〈σ+σ+σ+σ+〉 = |0〉+, |01〉+ →
η1→η2

〈σ+σ−σ+σ−〉 = |1〉+

|10〉+ →
η1→η2

〈ψσ+σ+σ+σ−〉 = |0〉−, |11〉+ →
η1→η2

〈ψσ+σ−σ+σ+〉 = |1〉−.

Consider, e.g., the braid matrix B
(6,+)
3 . It is obvious that

B
(6,+)
3 |00〉+ � B

(4,+)
1 |0〉+, B

(6,+)
3 |01〉+ � B

(4,+)
1 |1〉+,

B
(6,+)
3 |10〉+ � B

(4,−)
1 |0〉−, B

(6,+)
3 |11〉+ � B

(4,−)
1 |1〉−,

(33)

so that B
(6,+)
3 = B

(4,+)
1 ⊕ B

(4,−)
1 = I2 ⊗ B

(4,+)
1 because B

(4,−)
1 = B

(4,+)
1 . Here we used the

sign ⊕ to denote the direct sum of matrices. Completely in the same way we find B
(6,+)
4 =

B
(4,+)
2 ⊕ B

(4,−)
2 = I2 ⊗ B

(4,+)
2 because B

(4,−)
2 = B

(4,+)
2 and B

(6,+)

5 = B
(4,+)
3 ⊕ B

(4,−)
3 =

diag(1, i, i, 1). Note that the last generator B
(6,+)

5 is not a tensor product of I2 and B
(4,+)
3

because B
(4,−)
3 �= B

(4,+)
3 .
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Next we have to repeat the above computation of the braid generators B
(6,−)
j in the

negative-parity representation. The computational basis is now given by [6]

|00〉− = 〈σ+σ+σ+σ+σ+σ−〉, |01〉− = 〈σ+σ+σ+σ−σ+σ+〉,
|10〉− = 〈σ+σ−σ+σ+σ+σ+〉, |11〉− = 〈σ+σ−σ+σ−σ+σ−〉,

(34)

because the total parity of the σ fields must be negative (and this is compensated by the odd
number of Majorana fermions inside the CFT correlators which are omitted again). It is not
difficult to see that the results for B

(6,−)
j are very similar to those for B

(6,+)
j just in each step all +

are replaced by − and vice versa. For example B
(6,−)
1 = diag(1, 1, i, i) = B

(4,−)
1 ⊗I2, B

(6,−)
2 =

B
(6,+)
2 (as a consequence of B

(4,−)
2 = B

(4,+)
2 ), B

(6,−)
3 = B

(4,−)
1 ⊕ B

(4,+)
1 = I2 ⊗ B

(4,−)
1 , etc.

The only difference is in the last generator where B
(6,−)

5 = B
(4,−)
3 ⊕ B

(4,+)
3 = diag(i, 1, 1, i)

cannot be written as a tensor product.
The results for the braid matrices B

(6,±)
j can be summarized as follows: B

(6,±)
2 are equal

and given by (32) and the others are given explicitly by

B
(6,±)
1 = B

(4,±)
1 ⊗ I2, B

(6,±)
3 = B

(4,±)
1 ⊕ B

(4,∓)
1 = I2 ⊗ B

(4,±)
1 ,

B
(6,±)
4 = I2 ⊗ B

(4,±)
2 , B

(6,±)

5 = B
(4,±)
3 ⊕ B

(4,∓)
3 ,

(35)

where B
(4,±)
j are defined in equations (12) and (13). This proves statements (ii) and (iii) for

the case n = 2, which is our induction base. Now it is easy to see that in addition these braid
matrices satisfy

B
(6,+)
j ≡ B

(6,−)
j for 1 � j � 4,

which proves the statement (i) for the base n = 2.
It can also be seen that the positive-parity representation of the braid group B6 obtained

here is completely equivalent to the one derived earlier in [5, 19, 22] and the equivalence is
established by the braid matrix U = B

(6,+)
4 B

(6,+)
3 B

(6,+)

5 B
(6,+)
4 representing the exchange of the

pairs (η3, η4) and (η5, η6) (recall that in the representation of [5, 19, 22] the inert pair was
σ(η3)σ (η4) while here the inert pair is σ(η5)σ (η6)).

Induction step: Let us assume that the statements (i)–(iii) are fulfilled for the matrices B
(2n,±)
j .

We must first specify the basis of computational states for 2n + 2 anyons in which the braid
matrices are represented. The general scheme for representing n qubits in terms of 2n + 2
Ising anyons could be described as follows [6, 21]. We group the 2n + 2 fields σ into n + 1
pairs and encode information into the first n pairs: the state of the ith qubit is |0〉 if the ith
pair of σ fields is σ+(η2i−1)σ+(η2i ) (i.e., it fuses to the channel of I) or |1〉 if the ith pair is
σ+(η2i−1)σ−(η2i ) (i.e., it fuses to the channel of ψ). The last pair σ+(η2n+1)σc(η2n+2) contains
no information because its state c is determined by the requirement to have a nonzero CFT
correlator, i.e., c = ∏2n

i=1 ci . Thus, the computational states in the positive/negative-parity
representation of our n-qubit system are defined as CFT correlation functions of the (2n + 2)

non-Abelian σ fields and an even/odd number N of Majorana fermions

|c1, . . . , cn〉± =
〈
σ+σc1 · · · σ+σcn

σ+σc

N∏
j=1

ψ(zj )

〉
. (36)

The parity of the representation is denoted by the subscript of the computational-basis states:
it is ‘+’ for positive parity (corresponding to even number N of Majorana fermions) and ‘−’
for negative parity (corresponding to odd number N of Majorana fermions). In other words,
cj = + corresponds to the state |0〉 of the j th qubit, while cj = − corresponds to the state
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|1〉. Following our strategy we can first fuse the fields σ(η2n−1) and σ(η2n) corresponding to
the last qubit which has the effect of projecting out the last qubit, i.e.,

|c1, c2, . . . , cn−1, cn〉± −→
η2n−1→η2n

{
|c1, c2, . . . , cn−1〉± if cn = +

±|c1, c2, . . . , cn−1〉∓ if cn = − .

(The sign ± in front of the (n − 1)-qubit computational state for cn = − coincides with the
eigenvalue of the braid generator B

(2n,∓)
2n−1 , however, it is unimportant for our purposes and we

will skip it below.) This means that the computational states after projection will be organized
in pairs, such as | 0,1,0...,0,1,1︸ ︷︷ ︸

n−1

〉+,| 0,1,0...,0,1,1︸ ︷︷ ︸
n−1

〉−, having exactly the same state of the (n − 1)-qubit

system, however with opposite parity, on which the (2n+2)-particle exchange B
(2n+1,±)
j would

act by B
(2n,+)
j and B

(2n,−)
j . Given that we do not touch the last four anyons, corresponding to

the last qubit and the inert pair, and provided that the braid matrices acting trivially on the
last four anyons in the two representations are the same B

(2n,+)
j = B

(2n,−)
j (1 � j � 2n − 2)

because of the inductive step (i), we arrive at equation (29).
On the other hand we can fuse instead the first two σ fields corresponding to projecting

out the first qubit. Then, in the first-half of the computational states, containing σ+σ+ as a
first pair, the result of fusion is I so that the remaining CFT correlation function describes
a (n − 1)-qubit computational state with 2n anyons and the same parity. In the second-half
of the computational states, containing σ+σ− as a first pair, the result of fusion is ψ so that
the remaining CFT correlation function describes a (n − 1)-qubit computational state with 2n

anyons however with the opposite parity compared to the original one, i.e.,

|c1, c2, . . . , cn−1, cn〉± −→
η1→η2

{
|c2, . . . , cn−1, cn〉± if c1 = +

−|c2, . . . , cn−1, cn〉∓ if c1 = − .

The minus sign multiplying the (n−1)-qubit state when c1 = −1, which is totally unimportant
here because the braid generators which we want to compute act linearly, comes from the fact
that after fusing the first two anyons in this case we get one Majorana fermion on the left of
all remaining σ fields, which we have to move, according to our convention, all the way to the
right of them as it is in definition (36) of the computational states with negative parity. This
produces one minus sign for each pair of σ ’s which is in the state |1〉 but the total sign for this
move is always ‘−’. Next, executing exchanges on the remaining 2n anyons, that do not touch
the first qubit, we immediately find the recurrence relations (30) (note the shift j → j −2 in the
indices of the braid matrices due to renaming of the remaining anyons coordinates η′

j = ηj−2

for 3 � j � 2n + 2). The above-mentioned extra minus sign does not change anything
because the braidings act linearly. To illustrate this consider, e.g., the action of B

(8,+)
6 on the

states |000〉+ and |100〉+, which after projecting the first qubit will go to ±|00〉±. We have for

the first state B
(8,+)
6 |000〉+ � B

(6,+)
4 (|00〉+) = ei π

4√
2

(|00〉+ − i|01〉+) = ei π
4√
2

(|000〉+ − i|001〉+),
while for the second one

B
(8,+)
6 |100〉+ −→

η1→η2

B
(6,−)
4 (−|00〉−) = − ei π

4√
2

(|00〉− − i|01〉−) �
η1→η2

− ei π
4√
2

(−|100〉+ + i|101〉+) = ei π
4√
2

(|100〉+ − i|101〉+) .

Finally we must prove statement (28) for the matrices B
(2n+2,±)
j . Indeed, we have assumed

that B
(2n,−)
j = B

(2n,+)
j for 1 � j � 2n − 2, which is the inductive step (i) for B

(2n,±)
j . Then

we can first consider the case when 1 � j � 2n − 3 and use (29) to find

B
(2n+2,−)
j = B

(2n,−)
j ⊗ I2 = B

(2n,+)
j ⊗ I2 = B

(2n+2,+)
j , 1 � j � 2n − 3.
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For the rest of the braid matrices we can use (iii) to prove that for 3 � j � 2n

B
(2n+2,−)
j = B

(2n,−)
j−2 ⊕ B

(2n,+)
j−2 = B

(2n,+)
j−2 ⊕ B

(2n,−)
j−2 = B

(2n+2,+)
j ,

because B
(2n,+)
j ′ = B

(2n,+)
j ′ for 1 � j ′ � 2n − 2 where j ′ = j − 2. This completes the proof of

the proposition. �

Corollary. The recurrence relations (i)–(iii) in the proposition allow for the following explicit
representation for most of the braid matrices B

(2n+2,±)
j , which might be useful

B
(2n+2,±)
2j−1 = I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

j−1

⊗
[

1 0
0 i

]
⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

n−j

, for 1 � j � n, (37)

B
(2n+2,±)
2j = I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

j−1

⊗ ei π
4√
2

⎡⎢⎢⎣
1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1

⎤⎥⎥⎦⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−j−1

, (38)

for n � 2 and 1 � j � n − 1, as well as

B
(2n+2,±)
2n = I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

n−1

⊗ ei π
4√
2

[
1 −i
−i 1

]
, (39)

plus only one more (non-trivial) recursive relation for the last (diagonal) generator

B
(2n+2,±)
2n+1 = B

(2n,±)
2n−1 ⊕ B

(2n,∓)
2n−1 , (40)

with a base B
(4,±)
3 , given in equations (12) and (13). Note that braid matrices (40) are

different in the two representations with even or odd number of Majorana fermions and cannot
be expressed as tensor products of braid operators form the braid groups, such as B2n or B4,
for smaller number of anyons. To illustrate the derivation of the explicit formulae (37), (38)
and (39) consider for example the matrix B

(2n+2,±)
4 (i.e., j = 2 in equation (38)) on the one

hand we have from equation (29)

B
(2n+2,±)
4 = B

(2n,±)
4 ⊗ I2 = · · · = B

(8,±)
4 ⊗ I2n−3 ,

where we have used that we can add tensor factors of I2 to the right, reducing at the same
time the value of 2n, until 4 � 2n − 3, i.e., until 2n � 8, which gives rise to (2n − 8)/2 + 1
factors and on the other hand, using equation (30), we have

B
(2n+2,±)
4 = B

(8,±)
4 ⊗ I2n−3 = I2 ⊗ B

(6,±)
2 ⊗ I2n−3 ,

because B
(8,±)
4 = B

(6,±)
2 ⊕ B

(6,∓)
2 = I2 ⊗ B

(6,±)
2 (note that B

(6,+)
2 = B

(6,−)
2 ). Similarly,

combining equations (30) for j = 2n and (28) we can verify equation (39)

B
(2n+2,±)
2n = B

(2n,±)
2n−2 ⊕ B

(2n+2,∓)
2n−2 = I2 ⊗ B

(2n,±)
2n−2 = I2n−1 ⊗ B

(4,±)
2 .

Equations (37), (38), (39) and (40) give the most explicit expressions for the generators
B

(2n+2,±)
j of the braid group B2n+2 in the two Ising-model representations with opposite parity.

These equations also allow us to express the braid matrices, representing the exchanges of
Ising anyons in the multi-anyon Pfaffian wavefunctions, in terms of the universal R matrix for
the Ising model [8, 22] (or, equivalently, for the ŝu(2)2 Wess–Zumino-Witten model). Note the
crucial role of the projectors to states with definite parity leading to topological entanglement
[22], i.e., to the fact that not all braid generators are expressible as tensor products of braid
matrices with smaller dimensions and the unit matrix I2.
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5. Proof of the Nayak–Wilczek conjecture

Proposition 2. The representations of the braid group B2n+2 with positive or negative
fermion parity, constructed from the multi-anyon Pfaffian wavefunctions, are equivalent to
the spinor representations, with the corresponding parity, of B2n+2 constructed from the
spinor representations of SO(2n + 2). In more detail, the generators B

(2n+2,±)
j of B2n+2 in

the wavefunction representations can be expressed in terms of the generators R
(n+1,±)
j in the

SO(2n + 2) representations as follows:

B
(2n+2,±)
j = (C(2n+2,±))−1R

(n+1,±)
j C(2n+2,±), 1 � j � 2n + 1, (41)

where the equivalence matrices for the positive/negative parity (+/−) are given explicitly by
the product of all diagonal generators

C(2n+2,±) =
n+1∏
j=1

R
(n+1,±)
2j−1 =

n+1∏
j=1

B
(2n+2,±)
2j−1 . (42)

Proof. First it is easy to see that the diagonal generators in the wavefunction and spinor
representations of B2n+2 coincide, i.e.,

B
(2n+2,±)
2j−1 = R

(n+1,±)
2j−1 , 1 � j � n + 1.

Indeed, as we can see from [21], the diagonal matrices B
(2n+2,±)
2j−1 with indices 1 � 2j − 1 �

2n−1, given explicitly in equation (37) above, are completely identical to the diagonal matrices
R

(n+1,±)
2j−1 for 1 � 2j − 1 � 2n − 1, given explicitly in equation (26) in [21]. In addition, the

last diagonal matrices are equal because they satisfy the same recurrence relations

B
(2n+2,±)
2n+1 = B

(2n,±)
2n−1 ⊕ B

(2n,∓)
2n−1 or R

(n+1,±)
2n+1 = R

(n,±)
2n−1 ⊕ R

(n,∓)
2n−1

with exactly the same bases, B
(4,±)
3 = R

(2,±)
3 . Because the equivalence matrices (42) are

diagonal by construction, the matrices B
(2n+2,±)
2j−1 and R

(n+1,±)
2j−1 trivially satisfy equation (41),

and therefore we only need to consider the non-diagonal matrices. The non-diagonal matrices
in the SO(2n + 2) representation R

(n+1,±)
2j = P

(n+1)
± R

(n+1)
2j P

(n+1)
± can be expressed [21] as

projections of the unprojected matrices (σ1 and σ2 below denote the Pauli matrices)

R
(n+1)
2j = I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

j−1

⊗ ei π
4√
2

(I4 − iσ2 ⊗ σ2) ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−j

.

On the other hand, equations (38) and (39) suggest that the braid generators B
(2n+2,±)
2j can

be expressed in a similar way as projections B
(2n+2,±)
2j = P

(n+1)
± B

(2n+2)
2j P

(n+1)
± (with the same

projectors as for R
(n+1,±)
2j given in [21]), of the unprojected matrices

B
(2n+2)
2j = I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

j−1

⊗ ei π
4√
2

(I4 − iσ1 ⊗ σ1) ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−j

, (43)

i.e., if we define the unprojected matrices B
(2n+2)
2j as in equation (43) and apply the projectors

P
(n+1)
± as described in [21] then the projected matrices will completely coincide with B

(2n+2,±)
2j

as given in equations (38) and (39). Next, we can directly prove that the unprojected matrices
are related by

B
(2n+2)
2j = (C(2n+2))−1R

(n+1)
2j C(2n+2), 2 � 2j � 2n, (44)
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where the unprojected conjugation matrix is

C(2n+2) = S ⊗ · · · ⊗ S︸ ︷︷ ︸
n+1

=
n+1∏
j=1

R
(n+1)
2j−1 , S =

[
1 0
0 i

]
.

This is simply because of the identity

S−1σ2S = σ1 ⇒ (S ⊗ S)−1(σ2 ⊗ σ2)(S ⊗ S) = σ1 ⊗ σ1.

Now, projecting both sides of (44) with the projectors P
(n+1)
± , taking into account that

C(2n+2)P
(n+1)
± = P

(n+1)
± C(2n+2) and

(
P

(n+1)
±

)2 = P
(n+1)
± , we obtain equation (41) where the

projected equivalence matrix is equal to the product of all diagonal projected braid matrices
and coincides with equation (42), which completes the proof of proposition 2. �

Propositions 1 and 2 ultimately prove that the Pfaffian correlation functions with 2n + 2
non-Abelian quasiholes at fixed positions indeed belong to one of the two inequivalent
representations of the braid group B2n+2 whose generators B

(2n+2,±)
j can be expressed as

π/2 rotations in terms of the SO(2n + 2) γ -matrices and identify the parity in the spinor
representations with the fermion parity in the Ising model [6, 7,21].

6. Conclusions

In this paper we have consistently derived the braid matrices representing the exchanges of
four non-Abelian Ising anyons in both representations with positive and negative fermion
parity. To this end we have used the fact that the braid matrices are independent of the
distance between the braided particles, as well as the fusion rules for the Ising anyons in both
Neveu–Schwarz and Ramond superselection sectors of the Ising model. In addition we found
recurrence relations for the braid matrices B

(2n+2,±)
j for the exchanges of 2n + 2 Ising anyons

as well as explicit formulae for most of the braid generators in the representations with both
parities. Finally, we have proven that the braid matrices derived from the multi-anyon Pfaffian
wavefunctions are completely equivalent to the braid generators derived in the SO(2n + 2)

spinor approach [7, 21] and have given explicitly the matrices establishing the equivalence in
both representations.
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